Preconditioners for Nondeenite Hermitian Toeplitz Systems 1

نویسنده

  • Raymond H. Chan
چکیده

This paper is concerned with the construction of circulant preconditioners for Toeplitz systems arising from a piecewise continuous generating function with sign changes. If the generating function is given, we prove that for any " > 0, only O(log N) eigenvalues of our preconditioned Toeplitz systems of size N N are not contained in ?1?"; ?1+"] 1?"; 1+"]. The result can be modiied for trigonometric preconditioners. We also suggest circulant preconditioners for the case that the generating function is not explicitly known and show that only O(log N) absolute values of the eigenvalues of the preconditioned Toeplitz systems are not contained in a positive interval on the real axis. Using the above results, we conclude that the preconditioned minimal residual method requires only O(N log 2 N) arithmetical operations to achive a solution of prescribed precision if the spectral condition numbers of the Toeplitz systems increase at most polynomial in N. We present various numerical tests.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioners for ill { conditioned Toeplitz matrices

This paper is concerned with the solution of systems of linear equations ANx = b, where fANg N2N denotes a sequence of positive deenite Hermitian ill{conditioned Toeplitz matrices arising from a (real{valued) nonnegative generating function f 2 C2 with zeros. We construct positive deenite Hermitian preconditioners MN such that the eigenvalues of M ?1 N AN are clustered at 1 and the correspondin...

متن کامل

Circulant/Skewcirculant Matrices as Preconditioners for Hermitian Toeplitz Systems

We study the solutions of Hermitian positive definite Toeplitz systems Tnx = b by the preconditioned conjugate gradient method. For preconditioner An the convergence rate is known to be governed by the distribution of the eigenvalues of the preconditioned matrix A−1 n Tn . New properties of the circulant preconditioners introduced by Strang, R. Chan, T. Chan, Szegö/Grenander and Tyrtyshnikov ar...

متن کامل

Inverse Toeplitz preconditioners for Hermitian Toeplitz systems

In this paper we consider solving Hermitian Toeplitz systems Tnx= b by using the preconditioned conjugate gradient (PCG) method. Here the Toeplitz matrices Tn are assumed to be generated by a non-negative continuous 2 -periodic function f, i.e. Tn =Tn[f]. It was proved in (Linear Algebra Appl. 1993; 190:181) that if f is positive then the spectrum of Tn[1=f]Tn[f] is clustered around 1. We prove...

متن کامل

Fast Band-Toeplitz Preconditioners for Hermitian Toeplitz Systems

We consider the solutions of Hermitian Toeplitz systems where the Toeplitz matrices are generated by nonnegative functions f. The preconditioned conjugate gradient method with well-known circulant preconditioners fails in the case when f has zeros. In this paper, we employ Toeplitz matrices of xed band-width as preconditioners. Their generating functions g are trigonometric poly-nomials of xed ...

متن کامل

Circulant Preconditioners Constructed From Kernels

We consider circulant preconditioners for Hermitian Toeplitz systems from the view point of function theory. We show that some well-known circulant preconditioners can be derived from convoluting the generating function f of the Toeplitz matrix with famous kernels like the Dirichlet and the Fej er kernels. Several circulant precondition-ers are then constructed using this approach. Finally, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999